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Abstract
Aims: Subsyndromal depression (SSD) is common in mild cognitive impairment (MCI). 
However, the neural mechanisms underlying MCI with SSD (MCID) are unclear. The 
default mode network (DMN) is associated with cognitive processes and depressive 
symptoms. Therefore, we aimed to explore the topological organization of the DMN 
in patients with MCID.
Methods: Forty-two MCID patients, 34 MCI patients without SSD (MCIND), and 36 
matched healthy controls (HCs) were enrolled. The resting-state functional connectiv-
ity of the DMN of the participants was analyzed using a graph theoretical approach. 
Correlation analyses of network topological metrics, depressive symptoms, and cog-
nitive function were conducted. Moreover, support vector machine (SVM) models 
were constructed based on topological metrics to distinguish MCID from MCIND. 
Finally, we used 10 repeats of 5-fold cross-validation for performance verification.
Results: We found that the global efficiency and nodal efficiency of the left anterior 
medial prefrontal cortex (aMPFC) of the MCID group were significantly lower than 
the MCIND group. Moreover, small-worldness and global efficiency were negatively 
correlated with depressive symptoms in MCID, and the nodal efficiency of the left 
lateral temporal cortex and left aMPFC was positively correlated with cognitive func-
tion in MCID. In cross-validation, the SVM model had an accuracy of 0.83 [95% CI 
0.79–0.87], a sensitivity of 0.88 [95% CI 0.86–0.90], a specificity of 0.75 [95% CI 
0.72–0.78] and an area under the curve of 0.88 [95% CI 0.85–0.91].
Conclusions: The coexistence of MCI and SSD was associated with the greatest dis-
rupted topological organization of the DMN. The network topological metrics could 
identify MCID and serve as biomarkers of different clinical phenotypic presentations 
of MCI.
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1  |  INTRODUC TION

Mild cognitive impairment (MCI), a stage between normal aging 
and early Alzheimer's disease (AD), is characterized by objective 
cognitive impairment with preserved activities of daily living.1 
Subthreshold depression (SSD) was commonly associated with 
MCI, and the prevalence of SSD was higher in MCI patients than 
in normal individuals.2 SSD is typically defined as the frequency 
or intensity of depressive symptoms that do not meet the diag-
nostic criteria for depression.3 Previous studies suggest that the 
clinical significance of depressive symptoms does not depend on 
crossing the diagnostic threshold of depression, and SSD exists 
on a continuum with clinical depression.4 Of note, the prevalence 
of SSD is higher than clinical depression in older adults and is also 
correlated with MCI progression.5 Some evidence indicates severe 
functional disability and accelerated cognitive decline are associ-
ated with SSD in MCI patients.6 Despite the high prevalence and 
clinical importance of SSD in MCI patients, the neurobiological 
mechanisms of SSD in MCI remain largely unclear.

With the rapid advances in neuroimaging technology, explor-
ing depressive symptomatology in MCI has been strongly sup-
ported. Graph theoretical analysis is a technique widely employed 
in neurodegenerative diseases to quantify brain connectivity and 
gain insights into the topological organization of biochemical 
networks.7,8 Emerging evidence suggests that the default mode 
network (DMN) is one of the most prominent large-scale intrin-
sic networks involved in episodic memory retrieval and emotion 
regulation processes, acting as potentially valuable biomarkers of 
depression and MCI.9,10 Several studies found that MCI patients 
showed disrupted topological changes of the DMN compared to 
healthy controls,11,12 suggesting that the DMN has essential im-
plications for the pathophysiologic mechanisms of MCI. Previous 
studies found that the abnormal global topology of the DMN in 
depression patients was correlated with cognitive performance,13 
indicating that the topological organization of the DMN contrib-
utes to cognitive deficits in depression. However, no studies have 
been conducted to explore the topological organization of MCI pa-
tients with SSD (MCID). Moreover, one graph theoretical analysis 
found that MCI patients with late-life depression showed greater 
functional brain network topology disruptions than MCI patients 
without depression.14 However, the above study suggested 
whole-brain functional network disturbances in MCI patients with 
depression without exploring the sub-brain functional network of 
the DMN topological alterations. Exploring the topological orga-
nization of the DMN in MCID patients can better understand the 
presence of SSD in MCI patients, facilitating individualized treat-
ment and prevention strategies.

Our study aimed to explore the network topology of the DMN 
in MCID patients, MCI patients without SSD (MCIND), and healthy 
controls (HCs) using graph theoretical analyses. We investigated 
(1) global network metrics, including the clustering coefficient 
(Cp), shortest path length (Lp), normalized clustering coefficient 
(γ), normalized shortest path length (λ), small-worldness (σ), global 

efficiency (Eg), and local efficiency (Eloc); (2) regional network met-
rics, including degree centrality, betweenness centrality, and nodal 
efficiency (Enod); (3) correlations of abnormal network metrics with 
clinical symptoms such as depressive symptoms and cognitive func-
tion; and (4) construction of a classification model based on abnor-
mal network metrics for distinguishing MCID from MCIND.

2  |  MATERIAL S AND METHODS

2.1  |  Participants

The data used in this article were obtained from the Alzheimer's 
Disease Neuroimaging Initiative (ADNI) database (www. loni. ucla. 
edu/ ADNI). We recruited 42 patients with MCID, 34 patients with 
MCIND, and 36 healthy control subjects (HCs) matched for age, 
sex, and education level. The use of the ADNI data was approved 
by the institutional review board at each site, and all the participants 
provided their written permission. Moreover, Mini-Mental State 
Examination (MMSE) scores were used to evaluate participants' 
global cognition.15 The composite scores of memory (ADNI-MEM) 
and executive function (ADNI-EF) were generated by the ADNI neu-
ropsychological battery to reflect memory and executive functions, 
respectively.16 The 15-item Geriatric Depression Scale (GDS-15) was 
used to assess depressive symptoms.17 In studies using the GDS-15 
to assess depressive symptoms in older adults, scores higher than 
5 indicated the presence of clinical depression.18 Furthermore, par-
ticipants' demographic information, medical history, baseline symp-
toms, and assessment scale scores were obtained from the ADNI 
database.

The diagnosis of MCI was based on the National Institute of 
Neurological and Communicative Disorders and Stroke and the AD 
and Related Disorders Association (NINCDS-ADRDA) criteria.19 SSD 
was considered to have GDS-15 scores greater than 0 and less than 6, 
with depressive symptoms present, but did not meet the full criteria 
for major depression according to the fifth edition of the Diagnostic 
and Statistical Manual of Mental Disorders (DSM-5).20 The inclusion 
criteria for MCID were: (1) age between 55 and 90 years; (2) MMSE 
score between 24 and 3021; (3) a Clinical Dementia Rating scale 
(CDR) score of 0.522; and (4) GDS-15 score greater than 0 and less 
than 623; and they did not meet the diagnostic criteria for major de-
pressive disorder. Moreover, patients in the MCIND group included 
(1) those aged between 55 and 90 years; (2) those with MMSE scores 
between 24 and 30; (3) those with a CDR score of 0.5; and (4) those 
with a GDS-15 score of 0. Additionally, health control (HC) subjects 
were included if they (1) were aged between 55 and 90 years; (2) had 
MMSE scores equal to or greater than 27; (3) had a CDR score of 0; 
and (4) had a GDS-15 score of 0. The exclusion criteria for all subjects 
were as follows: (1) modified Hachinski ischemic score (HIS) greater 
than 424; (2) significant neurological or psychiatric illness; (3) current 
use of antidepressants; and (4) inability to undergo structural mag-
netic resonance imaging (MRI) and functional MRI. Notably, all sub-
jects were right-handed.
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2.2  |  Data acquisition and preprocessing

All the images were obtained from the ADNI database. T1-weighted 
structural images were acquired using the magnetization-prepared 
rapid gradient echo (MPRAGE) sequence with the following pa-
rameters: repetition time (TR) = 6.8 ms, echo time (TE) = 3.2 ms, flip 
angle = 9°, slice thickness = 1.2 mm, voxel size = 1 × 1 × 1.2 mm3, and 
matrix = 256 × 256 mm2. For the functional images, the following pa-
rameters were used: TR = 3000 ms, TE = 30 ms, flip angle = 80°, slice 
thickness = 3.3 mm, voxel size = 3.3 × 3.3 × 3.3 mm3, matrix = 64 × 64, 
and 140 time points in each run.

Imaging preprocessing was performed using the Data Processing 
Assistant for Resting-State fMRI (DPARSF, http:// www. restf mri. 
net/ forum/  dparsf).25 The first 10 images were discarded for mag-
netization equilibrium. Then, slice timing and head motion correc-
tion were performed for the remaining 130 images. To minimize 
the effect of head motion, we excluded the participants whose 
maximal head movement translation exceeded 2 mm, whose mean 
framewise displacement (FD) was more than 0.2 mm, or whose ro-
tation was more than 2°. Consequently, no participant was excluded 
due to excessive head motion. Next, the images were normalized 
to standard Montreal Neurological Institute (MNI) space using the 
DARTEL algorithm, and each voxel was spatially resampled to a voxel 
size of 3 × 3 × 3 mm3. The cerebrospinal fluid signal, white matter, and 
Friston-24 motion parameters were considered nuisance covariates. 
Subsequently, functional images were spatially smoothed with a 
6 mm full-width half-maximum (FWHM) isotropic Gaussian kernel. 

Finally, bandpass filtering (0.01–0.08 Hz) was conducted to decrease 
the effect of systematic drift and high-frequency noise.

2.3  |  Network construction and analysis

All network analyses in this study were performed using the Graph 
Theoretical Network Analysis (GRETNA) toolbox (http:// www. nitrc. 
org/ proje cts/ gretna/ ). First, the DMN comprises the anterior me-
dial prefrontal cortex (aMPFC), posterior cingulate cortex (PCC), 
hippocampal formation, ventral medial prefrontal cortex (vMPFC), 
the dMPFC, lateral temporal cortex (LTC), and other areas.26 More 
details about a specific set of 20 regions of interest (ROIs) of the 
DMN and the corresponding MNI coordinates can be found in 
Table 1. Moreover, we calculated the mean time series for all vox-
els within the ROI of the DMN using spherical seeds based on the 
MNI coordinate system. For each subject, the Pearson correlation 
coefficients between the mean time series of all pairs of 20 regions 
were computed, yielding a 20 × 20 correlation matrix for the DMN. 
We threshold at a wide range of sparsity levels according to the fol-
lowing criteria: (1) on the basis that there are no isolated nodes in 
the human brain, the average degree over all nodes of each network 
was larger than the result of the function gretna_get_rmax(rand(N, 
N)), where N = 20, denoting the number of nodes; and (2) the small-
worldness of the networks was larger than 1.1 for all subjects.27 In 
this study, the range of values generated for the threshold, from 0.16 
to 0.34 with an interval of 0.01, was applied to all matrices.

Regions Abbreviation Brodmann areas MNI (x, y, z)

Anterior medial prefrontal 
cortex

aMPFC.L
aMPFC.R

10, 32 −6 52 −2

6 52 −2

Dorsal medial prefrontal cortex dMPFC 9, 32 0 52 26

Ventral medial prefrontal cortex vMPFC 11, 24, 25, 36 0 26 −18

Posterior cingulate cortex PCC.L
PCC.R

23, 31 −8 −56 26

8 −56 26

Temporal parietal junction TPJ.L
TPJ.R

40,39 −54 −54 28

54 −54 28

Lateral temporal cortex LTC.L
LTC.R

21, 22 −60 −24 −18

60 −24 −18

Temporal pole TempP.L
TempP.R

21 −50 14 −40

50 14 −40

Posterior inferior parietal lobule pIPL.L
pIPL.R

39 −44 −74 32

44 −74 32

Retrosplenial cortex Rsp.L
Rsp.R

29, 30, 19 −14 −52 8

14 −52 8

Parahippocampal cortex PHC.L
PHC.R

20, 36, 19 −28 −40 −12

28 −40 −12

Hippocampal formation HF.L
HF.R

20, 36 −22 −20 −26

22 −20 −26

Abbreviation: MNI, Montreal Neurological Institute.

TA B L E  1  Coordinates of 20 predefined 
regions of interest.
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The global network metrics included Cp, γ, Lp, λ, σ, Eg, and Eloc. Cp 
measures the degree to which neighboring brain regions are con-
nected, and Lp quantifies the mean distance between the areas along 
the shortest path.28 Moreover, the small-worldness of a network, an 
optimal balance between the segregation and integration of informa-
tion processing procedures, is defined as the ratio of the normalized 
clustering coefficient (γ = Creal/Crandom) and the normalized shortest 
path length (λ = Lreal/Lrandom).29 According to the definition, the small-
world network should satisfy the following conditions: γ > 1 and λ ≈ 1 
or σ (=γ/λ) > 1.30 Moreover, Eglob measures the efficiency of the de-
livery of parallel messages on a global scale, while Eloc measures the 
efficiency of the delivery of information at the level of a single node.31 
The regional network metric of nodal efficiency (Enod) characterizes 
the efficiency of parallel information transfer.32 Finally, we calculated 
the area under the curve (AUC) for each global and regional metric 
over a range of densities instead of selecting a single sparsity thresh-
old, which delivered a summarized measure for the topological charac-
terization independent of the effect of choosing a single threshold.33

2.4  |  Statistical analysis

We tested for normality using the Shapiro–Wilk test for all data. For data 
following the normal distribution, we used analysis of variance to com-
pare the differences among the MCID, MCIND, and HC groups. Then, 
the sources of the differences among the means of the three groups 
were examined by the post hoc Fisher's least significant difference (LSD) 
test. For data that did not satisfy a normal distribution, we used the non-
parametric Kruskal-Wallis test to compare the differences among the 
three groups. We conducted chi-square tests for gender characteristics 
in the MCID, MCIND, and HC groups. Moreover, nonparametric permu-
tation tests34 with 10,000 permutations were used to determine signifi-
cant between-group differences in the AUC of all metrics controlling for 
age, sex, and education. Additionally, we used false discovery rate (FDR) 
correction for multiple comparisons,35 and the significance level was set 
at p < 0.05. To better localize specific brain regions with altered func-
tional connectivity in MICD patients, we used a network-based statistics 
(NBS) approach.36 Once differences between groups were found to be 
statistically significant, we explored the relationships between the ab-
normal network metrics of the DMN and clinical characteristics (MMSE, 
ADNI-MEM, ADNI-EF, and GDS scores) using a correlation analysis in 
each participant group separately while controlling for age, sex, and edu-
cation. Considering that the clinical data and neuroimaging metrics may 
not be normally distributed, we chose either Pearson's correlation or 
Spearman's rank correlation test, depending on the normal distribution 
of the data.37 The significance level was set at p < 0.05 and corrected 
using the false discovery rate (FDR) method.

2.5  |  Classification analysis

First, patients with MCI were randomly divided into training and 
test datasets at proportions of 0.7 and 0.3. Second, the t-test and 

Mann-Whitney U test were used to select the features with signifi-
cant differences (p < 0.05). Then, a 10-fold cross-validated least ab-
solute shrinkage selection operator (LASSO) regression analysis is 
used to determine the most effective features in the training data, 
and the corresponding lambda values are selected with the minimum 
mean squared error (MSE) values.38 Support vector machine (SVM) 
algorithms were adopted to construct a model for MCID and MCIND. 
SVM is currently one of the most popular and mature machine learn-
ing algorithms for neuroimaging research.39 Moreover, we used 10 
repeats of 5-fold cross-validation for model performance verifica-
tion. Additionally, receiver operating characteristic (ROC) curves and 
the corresponding areas under the curve (AUCs) were used to evalu-
ate the diagnostic capabilities of the model.

3  |  RESULTS

3.1  |  Demographic and clinical data

The demographic and clinical information are summarized in Table 2. 
The results of the Shapiro-Wilk test showed that all demographic 
and clinical data followed a normal distribution (p > 0.05) except 
for the GDS scores (p < 0.001). We found no significant differences 
among the MCID, MCIND, and HC groups in age, sex, or education 
(p > 0.05). For clinical characteristics, the MMSE and ADNI-MEM 
scores of participants in the MCID and MCIND groups were signifi-
cantly lower compared to those of the HC group, while ADNI-MEM 
scores were not significantly different among the three groups. 
Conversely, participants in the MCID group had significantly higher 
GDS scores than those in the other two groups. These results are 
summarized in Table 2.

3.2  |  Global graph theoretical analyses

MCID, MCIND, and HC subjects demonstrated typical small-
world properties within the defined thresholds. λ was close to 1, 
and γ and σ were greater than 1 (Figure 1A). Figure 1B shows the 
changes in global parameters, including Cp, Lp, σ and Eg, in the three 
groups as a function of sparsity thresholds. The Shapiro–Wilk test 
showed that σ (p = 0.007) in the MCID group and Lp (p = 0.010) in 
the MCIND group did not satisfy the normal distribution, and Eg 
and Cp (p > 0.05) followed the normal distribution. Compared with 
the HC group, the MCID group showed significantly higher values 
in the Lp (pMCID vs. HC < 0.001; Figure 2A). However, Cp had no sig-
nificant between-group difference (Figure 2B). Furthermore, the σ 
of the MCID group was significantly lower than that of the HC group 
(p MCID vs. HC = 0.018; Figure 2C). In addition, significantly lower Eg 
was observed between the MCID and HC groups, the MCIND and 
HC groups, and the MCID and MCIND groups (pMCID vs. HC < 0.001; 
pMCIND vs. HC = 0.024; pMCID vs. MCIND = 0.013; Figure 2D). No signifi-
cant correlations were found between any global topological metrics 
and cognitive function.
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3.3  |  Regional graph theoretical analyses

The Shapiro-Wilk test demonstrated that the regional metrics of 
the LTG and aMPFC followed a normal distribution. MCID pa-
tients and MCIND patients had significantly lower Enod in the left 
LTC (LTC.L) relative to the HC group (Figure 3A, p < 0.05, FDR cor-
rected). Moreover, the MCID group showed a significantly lower Enod 
in the left aMPFC (aMPFC.L) compared with the MCIND and HC 
groups (Figure 3B, p < 0.05, FDR corrected). Moreover, the results of 
Pearson correlation analysis showed that the Enod of LTC.L was posi-
tively correlated with the ADNI-EF scores (r = 0.370, p = 0.018, FDR 
corrected) in MCID patients (Figure 3A). The Enod of aMPFC.L was 
positively correlated with MMSE scores (r = 0.409, p = 0.009, FDR 
corrected) in the MCID group (Figure 3B). None of the topological 
measures were significantly associated with cognitive function in 
the MCIND and HC groups.

3.4  |  Relationships of topological metrics with 
depressive symptoms

Since GDS scores are not normally distributed data, we tested the 
relationship between global and regional topological metrics in the 
DMN and subthreshold depression measured by the GDS-15 using 
Spearman correlation analysis. The Spearman coefficient is abbrevi-
ated as “rs.” The small-world property of the DMN network was neg-
atively correlated with depressive symptoms (rs = −0.492, p = 0.001, 
FDR corrected) in the MCID group (Figure 3C). The global efficiency 
of the DMN was also negatively correlated with depressive symp-
toms (rs = −0.473, p = 0.002, FDR corrected) in the MCID group 
(Figure 3C). Likewise, a significant negative relationship existed be-
tween path length and depressive symptoms (rs = 0.463, p = 0.003, 
FDR corrected) in MCID patients (Figure 3C). However, there was no 
significant correlation between other global and regional topological 
metrics and the severity of subthreshold depression.

3.5  |  Classification analysis results

The LASSO regression model identified two topological metrics, in-
cluding Eg and the Enod of aMPFC.L for MCID and MCIND groups 
(Figure 4A). Meanwhile, the values of the coefficients and the cor-
responding lambda values, and the MSE values and the correspond-
ing lambda values for the MCID and MCIND groups, are shown in 
Figure 4B,C. In the analysis between the MCID and MCIND patients, 
the accuracy, sensitivity, specificity, and AUC were 0.83, 0.84, 0.82, 
and 0.92 in the training set and 0.83, 0.86, 0.78, and 0.88 in the 
test set, respectively (Figure 4D). In cross-validation, the SVM model 
with two topological metrics had an accuracy of 0.83 [95% CI 0.79–
0.87], a sensitivity of 0.88 [95% CI 0.86–0.90], a specificity of 0.75 
[95% CI 0.72–0.78], and an AUC of 0.88 [95% CI 0.85–0.91]. The 
results of the cross-validation method suggested that the model has 
relatively good discrimination ability.

4  |  DISCUSSION

Our study found changes in the network topology of the DMN in MCI 
patients with SSD using graph network analysis. More specifically, the 
global metric of Eg was significantly lower in MCID patients than in 
MCIND patients. The Lp was significantly higher, and Eg and σ were 
significantly lower in MCID patients than in HCs. Furthermore, the 
global metrics of σ,  Lp, and Eg were correlated with depressive symp-
toms in MCID. For the regional metrics, the MCID group showed a 
significantly lower Enod of the left aMPFC than the MCIND group. The 
Enod of the left LTC and left aMPFC were significantly lower in MCID 
patients than in HCs. Additionally, the regional metrics of Enod of the 
left LTC and left aMPFC were correlated with cognitive function in 
MCID. Moreover, we found that the classification model based on 
topological metrics can discriminate patients with MCID from MCIND 
with relatively successful diagnostic values. The findings may provide 
novel insights into the underlying pathophysiology of SSD in MCI.

TA B L E  2  Demographic and clinical characteristics.

Characteristics MCID (N = 42) MCIND (N = 34) HC (N = 36) p value

Age (years) 74.11 ± 7.92 74.26 ± 5.13 74.32 ± 4.65 0.911

Sex (M/F) 22/18 17/15 20/16 0.978

Education (years) 16.55 ± 2.12 16.51 ± 2.35 16.49 ± 2.58 0.358

MMSE 26.30 ± 2.27 26.87 ± 2.24 28.83 ± 1.32 0.00002a; 0.00039b

ADNI-MEM 0.30 ± 0.78 0.31 ± 0.71 1.04 ± 0.55 0.00003a;0.00017b

ADNI-EF 0.35 ± 1.11 0.41 ± 0.96 0.67 ± 0.77 0.207

CDR 0.5 0.5 0 -

GDS-15 2.43 ± 1.41 0 0 4.9E-15a;1.1E-15c

Note: Data are presented as mean (M) ± standard deviation (SD).
Bold indicates statistical significant value (p < 0.001).
Abbreviations: ADNI-EF, ADNI composite score for executive function (EF); ADNI-MEM, Alzheimer's Disease Neuroimaging Initiative (ADNI) 
composite score for episodic memory (MEM); CDR, Clinical Dementia Rating Scale; GDS-15, the 15 items of Geriatric Depression Screening 
Scale; HC, healthy controls; MCID, MCI patients with subthreshold depressive symptoms; MCIND, MCI patients without subthreshold depressive 
symptoms; MMSE, Mini Mental State Examination; a-c: post hoc analysis following one-way analysis of variance (a: HC vs. MCID, b: HC vs. MCIND, c: 
MCID vs. MCIND).
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In our study, Lp was significantly higher and σ and Eg were sig-
nificantly lower within the DMN in the MCID group than in the HC 
group. The small-world properties facilitate the description of a com-
plex brain network, which is a balance between high segregation and 
integration, maximizing the information propagation efficiency.40 
More precisely, functional segregation could be measured by Eloc 
and CP, and functional integration was characterized by Lp and Eg.41 
In our study, the higher Lp and lower Eg in the MCID group indicated 
functional integration disruption in the DMN, suggesting insufficient 
capability to combine specialized information from distributed brain 
regions in MCID patients. Generally, MCID patients had relatively 
reserved network segregation (no differential Cp and Eloc) and de-
creased network integration (lower Eglob and higher Lp), leading to 
a weaker small-worldness (lower σ). It may be the combined result 
of neurodegeneration and abnormalities in the emotional circuitry. 
These findings suggested that MCID patients exhibit disturbances 
in the functional integration of the DMN, resulting in MCID patients 
who may not be able to coordinate cognitive resources properly.

Moreover, Eg was significantly lower in the DMN of patients in 
the MCID group than in participants in the MCIND group. A study 

revealed that MCI patients comorbid with depression exhibited the 
greatest disruptions in the functional network integration of dimin-
ished Eg compared with MCI patients and depression patients.14 
Combined with our findings, MCI patients, even those with comor-
bid SSD rather than depression, also demonstrated the greatest 
disruptions in functional integration measures of reduced Eg rela-
tive to MCIND and HC groups. Evidence has shown that SSD is not 
fundamentally different from the current definition of depression 
and lies on a continuum with more severe forms of depressive epi-
sodes.42 Our study of MCI patients with SSD and a previous study of 
MCI patients with depression found similar changes in graph theory 
measures, supporting the fact that there is a continuum of depres-
sive symptoms. In general, the findings provide novel evidence that 
MCID leads to a severely disrupted functional network organization 
of the DMN. Therefore, the global functional network metric of Eg 
may serve as a promising biomarker of different clinical phenotypic 
presentations of MCI, suggesting that MCID may be a specialized 
subtype of MCI with small-world properties that differ from MCIND.

Moreover, we found that global network metrics, including σ, 
Eg, and Lp were associated with subthreshold depressive symptoms 

F I G U R E  1  Small-world properties of the DMN in MCID, MCIND, and HC groups (A). Global topographic metrics in MICD, MCIND, and 
HC groups with the selected range of sparsity threshold (B). Cp, clustering coefficient; DMN, default-mode network; Eg, global efficiency; 
HC, healthy control; Lp, shortest path length; MCID, MCI patients with subthreshold depressive symptoms; MCIND, MCI patients without 
subthreshold depression; σ, small-worldness.
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measured by GDS-15 scores in the MCID group. The findings sug-
gest that more disrupted topological metrics in MCID patients are 
associated with more severe depressive symptoms. A previous 
study showed that the network metrics of Eg are significantly cor-
related with depressive symptoms in MCI patients with comorbid 
depression.14 However, few studies have focused on the relation-
ship between topological metrics and the severity of SSD in MCID 
patients. Our study found that SSD was associated with Eg in MCID 
patients, similar to the above research, and may be consistent with 
the concept of a continuum of depression. The findings suggest that 
the regulation of the balanced state of functional integration and 
segregation of small-world properties may lead to an improvement 
in depressive symptoms. In summary, these global network metrics 
may be useful biomarkers for identifying and assessing depressive 
symptoms in patients with MCID.

We observed a lower Enod of the left LTC in the MCID and MCIND 
groups than in the HC group. The LTC belongs to the dorsal medial 
prefrontal cortex (dMPFC) subsystem, which preferentially engages 
in self-referential judgments about present situations or mental 
states.43 One study that selected the left LTC as the targeted cor-
tical region for anodal transcranial direct current stimulation (tDCS) 
found enhanced global cognition and executive function in patients 
with AD, suggesting that the left LTC was associated with cognitive 

function, particularly executive function.44 Moreover, the evidence 
indicated that the LTC is involved as an integral part of the cognitive 
network processing executive function.45 In our study, we observed 
that the Enod of the left LTC was positively correlated with executive 
function measured by ADNI-EF scores in the MCID group, highlight-
ing the role of the left LTC in executive function. In summary, our 
results revealed that MCI, regardless of SSD status, significantly dis-
rupted the nodal efficiency of the left LTC, providing a neural basis 
for the left LTC as a therapeutic target for MCI patients.

Additionally, the MCID group showed a lower Enod of the left 
aMPFC than the MCIND and HC groups. The aMPFC serves as 
the core hub of the DMN, engaging in processes such as personal 
significance, introspection about one's mental states, and evok-
ing emotion.46 Moreover, the Enod of the left aMPFC is another 
metric of the selected features to distinguish MCI and MCIND, 
suggesting that the Enod of the left aMPFC is a regional topologi-
cal measure of identifying the presence or absence of SSD in MCI 
patients. Several studies have shown that the aMPFC is a crucial 
brain area in depressive symptomatology and is involved in the un-
derlying pathology of depression,47 which could support our find-
ings to some extent. Recent studies have shown that the aMPFC 
processes the emotional and cognitive functions required for ad-
equately handling episodic and fear memory.48 In our study, the 

F I G U R E  2  Differences in global network metrics of the DMN, including the Lp (A), Cp (B), σ (C), and Eg (D) between MICD, MICND, and HC 
groups. The values on the Y-axis indicate the AUC of the graph metrics within the sparsity threshold. The red dots represent what the group 
means. AUC, the area under the curve. (*p < 0.05; **p < 0.01; ***p < 0.001).
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Enod of the left aMPFC positively correlated with global cognition 
measured by MMSE in the MCID group, which is compatible with 
the role of the aMPFC in the development of cognitive impair-
ments. The findings suggested that the left aMPFC may serve as 
a biomarker of different clinical phenotypic presentations of MCI.

To our knowledge, this study is the first to construct a classifi-
cation model of topological metrics for MCID and MCIND patients. 
This model reveals relatively good accuracy and sensitivity, with 
relatively high discrimination power. A study showed distinct pat-
terns of cognitive deficit in MCID and MCIND groups, suggesting 
the heterogeneity of MCI subgroups.49 Moreover, a study showed 

increased gray matter in the middle cingulate cortex accompanied by 
increased functional connectivity with the right parahippocampus in 
the MCID group compared to the MCIND group, providing neuroim-
aging evidence for the heterogeneity of MCI subgroups.50 Previous 
studies have shown that resting-state functional connectivity can 
discriminate between mild cognitive impairment and healthy indi-
viduals with an accuracy of 73.49%.51 In the current study, topolog-
ical metrics of the DMN were selected, global efficiency and nodal 
efficiency values of the left aMPFC survived after LASSO regres-
sion, and then a classification model with relatively high sensitivity 
was proposed. Our findings suggested that the pathophysiological 

F I G U R E  3  Brain regions show abnormal nodal efficiency of the DMN between MCID and MCIND patients and HCs. The lower Enod of 
the LTC.L in MICD positively correlated with ADNI_EF scores (A). The lower Enod of the aMPFC.L in MICD positively correlated with MMSE 
scores (B). Global network metrics correlated with depressive symptoms in MICD patients (C). ADNI-EF, ADNI composite score for executive 
function (EF); aMPFC.L, the left anterior medial prefrontal cortex; Enod, nodal efficiency; LTC.L, the left lateral temporal cortex; MMSE, Mini-
Mental State Examination. *p < 0.05; **p < 0.01; ***p < 0.001.

 17555949, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cns.14547, W

iley O
nline L

ibrary on [05/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  9DU et al.

mechanism of MCID was closely associated with the re-organization 
of the DMN, providing key insights into the underlying pathophysi-
ology of SSD in MCI. Moreover, disrupted topological metrics of the 
DMN could identify patients with MCID from MCIND and can be 
valid biomarkers to identify MCID patients and MCIND patients, 
which has great potential for personalized clinical application.

There were some limitations in this study. First, our study per-
formed a graphical analysis using resting-state fMRI of MCID, MCIND 
patients, and HCs. Evidence suggests that white matter (WM) damage 
is associated with depressive symptoms in MCI patients52; therefore, 
further studies on WM are warranted in future studies. Second, while 
we excluded the minority of MCID patients who were undergoing 
antidepressant therapy, most MCI patients were receiving pharma-
cological treatment to improve cognition, which may interfere with 
brain function. There is a future need to focus on this group in the pre-
clinical phase of AD earlier than MCI with depressive symptoms and 
not receiving pharmacological treatment. Moreover, this study was 
cross-sectional, and future longitudinal studies would be more ben-
eficial for observing the cognitive function prognosis of MCI with or 

without SSD. Additionally, there are no standardized diagnostic criteria 
or screening tools for subthreshold depression, which leads to possible 
heterogeneity among relevant studies. Future research should agree 
on an operational definition of subthreshold depression. Finally, the 
sample size was limited. Future studies with a large sample size are 
necessary to validate our findings further.

Our findings provide evidence that the coexistence of SSD and 
MCI had the greatest disruptions of the DMN in topological metrics. 
Moreover, abnormal topological metrics not only correlate with cog-
nitive function and depressive symptoms but also provide relatively 
good discrimination between MCID and MCIND. The findings may 
facilitate clarification of the underlying mechanisms of SSD and pro-
vide promising neuroimaging biomarkers of different clinical pheno-
typic presentations of MCI.
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